技術革新を考慮した社会資本のLCA手法：道路改良事業を対象として
A Life Cycle Assessment on Infrastructure Considering Technology Innovation:
A Case Study of Road Improvement Projects
〇森本涼子*1、柴原尚希*3、加藤博和*1
Ryoko MORIMOTO, Naoki SHIBAHARA and Hirokazu KATO
1) 名古屋大学大学院環境学研究科
2) mori@urban.env.nagoya-u.ac.jp

1. はじめに
社会資本のLCA適用にあたっては、そのライフサイクルが長期にわたることに起因した特有の課題を認識し、対処する必要がある。その1つが技術革新である。将来の維持管理技術の向上や、それを利用する方法に関する技術の革新については、従来の社会資本LCAでは考慮されていない。

例えば、著者らは道路改良事業にLCAを適用し、自動車の走行状況改善がインフラ建設による環境負荷排出を相殺することによる、環境負荷削減の可能性があることを示している。しかし、これは現在の自動車が、渋滞において停止や低速走行を増加すると環境負荷排出を増大するという特性を含んでおり、自動車技術の進展によりこうした影響が解消されると、事業の環境負荷削減効果は小さくなる。穿孔によってはインフラ整備排出分の環境負荷増大の内が影響としてカウントされるという結果になってしまかもしれない。

本稿では、道路改良事業を対象に、将来の自動車技術の進展を考慮したLCAの方法論を構築する。道路インフラとそれを利用する自動車の走行を評価範囲に含め、道路改良による環境負荷変化を包括的にとらえ、その上で、低環境負荷自動車の普及とナノリオを考慮した場合、LC-\text{CO}_2推計結果がどう変わるかを検討する。

2. 路切除却事業へのLCA適用方法
2.1 ケーススタディの概要
本稿では、道路改良事業の例として、鉄道高架化による路切除却事業を対象にLCAを適用する。対象とする事業の概要を図1に、路切遮断時間と自動車走行状況の設定を表1に示す。対象車種は各車種の割合を実測値が得られなかったため、Websterの選択式を応用して算出している。交通量が多く「開かずの路切」である路切 A と、交通量・遮断時間共に平均的な路切Bについて推計を行う。

2.2 LCA適用方法
a) Goal and scope definition
対象範囲の自動車交通に伴う環境負荷排出量（走行分および路切遮断時間）のアドリングに対する燃料損失を推計するとともに、路切遮断後の変化を推計する。また、

表1 路切遮断状況・自動車走行状況の設定

<table>
<thead>
<tr>
<th>路切 A</th>
<th>路切 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>走行分</td>
<td>42</td>
</tr>
<tr>
<td>通行時</td>
<td>24</td>
</tr>
<tr>
<td>通行時</td>
<td>3</td>
</tr>
<tr>
<td>総交通量</td>
<td>7,000</td>
</tr>
<tr>
<td>大型車混入率</td>
<td>16</td>
</tr>
<tr>
<td>平均行列長</td>
<td>290</td>
</tr>
<tr>
<td>平均停止時間</td>
<td>4.7</td>
</tr>
<tr>
<td>停止車の割合</td>
<td>100</td>
</tr>
</tbody>
</table>

ピーク時：7-9時、通常時：9-19時

路切や線路など改良前には使用されていた構造物の撤去作業による環境負荷排出量は考慮しない。
プロジェクトの対象期間は、建設開始から供用後30年間とする。評価対象の空間範囲は、路切手前の道路500m 区間とする。環境負荷は地球温暖化への寄与度が大きい CO(二酸化炭素)のみ対象とする。

b) Inventory analysis
インフラ整備の環境負荷推計には、狩野らが推計した鉄道駅・高架橋の標準原単位を用いる。

路切遮断による交通現象を、1)路切遮断により持ち行列が形成され、遮断の間自動車は停止しアイドリングを行、2)遮断開放に伴い持ち行列先頭の自動車が動き出し、後続車は低速度で走行し遮断に移動し、3)路切遮断前後は一旦停止を行う、(1)→(3)と考え、それぞれ

図1に示す停止、進行速度、一旦停止として考慮する。対象道路を通過する自動車から発生する COの推計は、文献1の方法で行う。走行、停止、一旦停止についてそれぞれ燃料消費量を求め、それら燃料を消費する際に発
生するCO₂排出原単位を乗じて排出量を求める。走行によるCO₂排出量は、平均旅行速度を反映する。なお、自動車の燃料消費のCO₂原単位は、日本建築学会のLCAデータベースVer.2.2(d)を用いる。

3. 自動車技術革新の考慮の考え方
LC-CO₂の大部分を占める自動車の技術革新を考慮する。ここでは、低環境負荷車として自動車メーカーが重点的に取り組む、ハイブリッド車・燃料電池車の普及を想定する。

3.1 将来の自動車の環境性能
ハイブリッド車は、電気モーターおよび二次電池などからなるハイブリッドシステムを内燃機関に組み合わせた自動車であり、1)ブレーキ時のエネルギー回生が可能となる、2)エンジン効率の低い走行条件ではモーターで走行し、高い条件では発電するなどしてエンジン効率を高められる。燃料電池車は、水素と酸素の化学反応によって電気を取り出す燃料電池を用い、電気モーターで走行する自動車であり、1)エネルギー効率が高く、2)走行時にCO₂を排出量しない、3)大気汚染の原因となる有害物質を発生しない、といった利点がある。

このような特性を踏まえ、容易に自動車の環境負荷排出原単位を、従来のガソリンを1として基準化して表2のように設定している。走行に関しては燃料をガソリンとした時のWell-to-Wheelの推計結果を用いている。

3.2 低環境負荷自動車普及シナリオ
松本p1が消費者の選好や技術進展・社会要因からモデル化した普及予測を用いる(20).

4. 技術革新を考慮したLC-CO₂推計結果
技術革新を考慮しない場合・する場合の、産業に伴うLC-CO₂推計結果を示す(図3)。

踏切A(交通量・遮断時間大)は、技術革新を考慮せずに推計を行うと、事業によるLC-CO₂が37%削減できる結果が得られるが、自動車の技術革新によって走行コードの削減効果が見込まれる。それを考慮した推計結果では事業のLC-CO₂削減効果は26%となった。技術革新を考慮しない推計では、削減効果を過大評価していることになる。さらに踏切B(平均的な踏切)では、技術革新を考慮せずに推計を行うと、事業によってLC-CO₂が12%削減できる結果が得られるが、技術革新を考慮した推計結果では、逆にLC-CO₂が3%増加している。

以上の結果、事業による環境負荷削減量が、自動車の環境负荷負荷による削減量より小さい場合、インフラ整備による環境負荷排出によって、かえってLC-CO₂が増大してしまう可能性があることが示される。

5. まとめ
技術革新による踏切除却事業に、自動車の技術革新を考慮したLCAを適用した結果、現状の技術水準が保たれる仮定ではCO₂削減効果が見込まれた事業でも、技術の進展により、インフラ整備による環境負荷を排出した分LC-CO₂が増大してしまう可能性があることが明らかとなった。

6. 謝辞
本稿は科学研究費・萌芽研究(19651016)の助成を受けたものである。

7. 引用文献
1) 森本浩子、斎藤悟史、かの："第3回 LCA 学会研究発表会"、名古屋、(2008)、pp.76-77
2) 斎藤弘治、浅見均、川崎章："第32回環境システム研究論文発表会"、東京、(2004)、pp.203-208
3) 日本建築学会： "LCA データベース 1995 年産業調査分析データベース Ver.2.2"、(2003)
4) 電子産業・成長戦略フォーラム： "自動車の環境対策とエネルギー"、(2008)、p.37
5) トヨタ自動車株式会社、みずほ情報総研株式会社： "輸送用燃料のWell-to-Wheel評価"、(2004)、p.3
6) 松本浩子： "産業総研 TODAY"、(612)、(2006)、pp.16-17